HENRY FORD HEALTH

Reducing Greenhouse Gas Emissions in Jackson

A CQI Story about the Triumphs of Science and Collaboration in Changing Clinical Operations

Co-Authors

Department of Anesthesia Henry Ford Health System

- Joshua Goldblatt, MSN
- Kimberly Finch, MSN
- Terry Ellis, MD
- Kannan Suri-Mohanram, MD

Background

• The climate change crisis threatens human health by adversely affecting the spread of infectious disease, malnutrition, mental health, and the displacement of people or communities. (1)

Anesthetic gases have 150-2,500x greenhouse effect of CO₂ 5% of acute hospital CO₂ equivalent emissions

> 50% of periop emissions

Estimated 0.1% of total global greenhouse gas effect yearly

Aims

Reduce greenhouse gas emission from anesthetic gas waste

- **MPOG goal:** at least 45% of cases in 2024 will have an average hourly emissions profile of 2.83kg CO₂ equivalents per hour of maintenance anesthesia.
- **HFHS Jackson goal:** reduce average hourly emissions rate each month by 40% by February 2024 and maintain that level into the future.

Measures

SUS-01 – Fresh Gas Flow only

- Percentage of cases using inhaled anesthetics with mean fresh gas flow during maintenance ≤ 3L/min
- Target for P4P \geq 95% of cases

SUS-02 - Anesthetic gas converted to CO_2 equivalent based on greenhouse gas effect

- Metric is calculated based on percentage of cases with either:
 - Average emissions below a threshold of 2.83kg CO_2eq/hr
 - Total maintenance emissions below 2.83kg CO_2eq
- Calculation based on GWP¹⁰⁰
- Threshold set based on moderate usage of least toxic agent, sevoflurane, 2% at 2L/min
- Target for P4P \geq 45% of cases

Table 1. Elements of Emissions Calculations

Agent	Molecular Weight (3)	GWP 100 (3)	Max Vapor Flow	Minimum Alveolar Concentration	Max FGF
Sevoflurane	200g/mol	144	40mL/min	2-2.4%	1.6L/min
Isoflurane	184.5g	565	11mL/min	1.2-1.8%	0.65L/min
Desflurane	169g	2540	2.6mL/min	6.8%	0.04L/min
Nitrous Oxide	44g	282	92mL/min	1L/min	5 min

Histogram of FGF in January, 2020

Histogram of FGF in January, 2020

HENRY FORD HEALTH

HENRY FORD HEALTH.

Histogram of FGF in January, 2020 8 >7.0 7 6.6-7.0 6.1-6.5 6 5.6-6.0 5.1-5.5 5 4.6-5.0 4.1-4.5 4 3.6-4.0 3.1-3.5 3 2.6-3.0 2.1-2.5 2 1.6-2.0 1.5 0 5 10 15 Number of cases 0

Excel's Boxplot

HENRY FORD HEALTH

HENRY FORD HEALTH

Mean Fresh Gas Flow Rate, Distribution of Cases

Mean Fresh Gas Flow Rate, Distribution of Cases

Figure 2. July 2023

Any use of N_2O disproportionately increases both total case emissions and average hourly emissions.

N ₂ O accounted for:	July `23
Percentage of all maintenance anesthesia emissions	52.2% (3391kg)
Percentage of cases	34.0%
Percentage of total maintenance minutes	8.1%

HENRY FORD HEALTH

Comparing Average Hourly Emissions Among Cases that Used N₂O to Those That Used None

Figure 2. July 2023

Any use of N_2O disproportionately increases both total case emissions and average hourly emissions.

N ₂ O accounted for:	July `23	May `24
Percentage of all maintenance anesthesia emissions	52.2% (3391kg)	11.2% (218kg)
Percentage of cases	34.0%	5.7%
Percentage of total maintenance minutes	8.1%	0.8%

Decreasing Use of Nitrous Oxide

Average Hourly Emissions during Maintenance Anesthesia

Average Hourly Emissions during Maintenance Anesthesia

Dewey Durant Park East Tawas, MI 35.5 acres

Results

Sustainability measure	Goal	Outcome achieved
SUS-01: Cases with mean Fresh Gas Flow \leq 3L/min	95%	97% for 2023
SUS-02: Cases with mean hourly CO_2 equivalent ≤ 2.83 kg/hour	45%	 35% Jan-July 2023 56% Aug-Jan 2024 80% Feb-May 2024
Monthly mean hourly emissions	40% reduction	January's mean hourly emissions are 50% below baseline
Total emissions avoided since August	n/a	>30,400kg CO ₂ eq

Conclusions

- Considering the greenhouse gas effect of inhaled anesthetics is a paradigm shift in this practice of medicine.
- A focus on fresh gas flows can have a profound impact on hourly and total emissions.
- There are differential global warming effects of various agents. Specifically, avoiding routine use of nitrous oxide can further reduce emissions.
- Participation in the Anesthesia CQI-sharing metrics and targets can elevate issues of environmental sustainability in the administration of anesthetics.
- Results for other Henry Ford Health System hospitals are catching up.

Bibliography

- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022 Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2023. doi:10.1017/9781009325844
- Devlin-Hegedus JA, McGain F, Harris RD, Sherman JD. Action guidance for addressing pollution from inhalational anaesthetics. *Anaesthesia*. 2022;77(9):1023-1029. doi:10.1111/anae.15785
- 3. Guetter CR, Williams BJ, Slama E, et al. Greening the operating room. *Am J Surg*. 2018;216(4):683-688. doi:10.1016/j.amjsurg.2018.07.021
- 4. Multicenter Perioperative Outcomes Group (MPOG). SUS-02 : Global Warming Footprint, Maintenance. 2022. https://spec.mpog.org/Spec/Public/61

HENRY FORD HEALTH

Reducing Greenhouse Gas Emissions in Jackson: A CQI Story about the Triumphs of Science and Collaboration in Changing Clinical Operations

Joshua Goldblatt, MSN; Kimberly Finch, MSN; Terry Ellis, MD; Kannan Suri-Mohanram, MD Department of Anesthesia, Henry Ford Health System

Abstract

The climate change crisis threatens human health by adversely affecting the spread of infectious disease, malnutrition, mental health, and the displacement of people or communities. (1)

The Anesthesiology Performance Improvement and Reporting Exchange (ASPIRE) is a project of the Multicenter Perioperative Outcomes Group (MPOG) Collaborative Quality Initiative (CQI). Their sustainability goal is to help reduce greenhouse gas emissions from anesthesia waste used in the US by optimizing environmentally-safer anesthesia agents and managing fresh gas flow.

Aim

- MPOG goal: at least 45% of cases in 2024 will have an average hourly emissions profile of 2.83kg CO₂ equivalents per hour of maintenance anesthesia.
- At Henry Ford Jackson Hospital (HFJH): average hourly emissions were 6.32kg CO₂ eq/hr. We seek to reduce that average hourly emissions rate each month by 40% by February 2024 and maintain that level into the future.

Measures:

- Sustainability Goal 01 (SUS-01): Percent of cases with mean fresh gas flow (FGF) during maintenance anesthesia of ≤3L/min, target 95%
- Sustainability Goal 02 (SUS-02): Percent of cases where mean hourly CO₂ eq is less than the CO₂ eq of 2% sevoflurane at 2L/min FGF = 2.83kg CO₂ eq/hr, target 45%
- Monthly Mean of Hourly Emissions
- Calculating CO₂ equivalents is based on:
- Vapor Flow = FGF x Percent Agent
- GWP¹⁰⁰ = Global warming potential is a multiplier to approximate comparative global warming effect of a chemical to CO₂ over a 100-year timeframe
- Molecular weight = GWP to calculate CO₂ eq is based on the same mass of chemical

Agent	Molecular Weight (3)	GWP ¹⁰⁰ (3)	Max Vapor Flow	Minimum Alveolar Concentration
Sevoflurane	200g/mol	144	40mL/min	2-2.4%
Isoflurane	184.5g	565	11mL/min	1.2-1.8%
Desflurane	169g	2540	2.6mL/min	6.8%
Nitrous Oxide	44g	282	92mL/min	1L/min

Interventions

Date	Action		
August 2021	Reduced default Fresh Gas Flow rate in all anesthesia machines at HFHS		
July 2023	Joint education session for CRNAs and anesthesiologists on technical mechanics of low flow anesthesia (<1L/min)		
August 2023	Clinical education around performance, reliability of previous target (3L/min), with encouragement toward target below 2L/min		
Education about SUS-02 metric, ho November 2023 calculated, and how to meet metric performance data from August-Sep			
January 2024	Data show reductions in two areas: 1. Use of highest emission gases 2. Use of fresh gas flows		

Baseline Data

Figure 1. Boxplots show the distribution of case mean FGF, month by month. SUS-01 metric was introduced during 2020. By August 2021, the distribution had compressed showing more consistent practice. Each boxplot also shifted down reflecting lower flows. Additional reductions began in August 2023 after education with centralization of the mean to the median.

Emissions Avoided --- Baseline Average --- Mean Hourly Emissions in CO2 eq

Figure 3. Monthly mean hourly emissions in kg CO₂ eq.

Six consecutive months of decreasing emissions.

Sustainability measure	Goal	Outcome achieved	
SUS-01: cases with mean Fresh Gas Flow ≤ 3L/min	95%	97% for 2023	
SUS-02: Cases with mean hourly CO_2 equivalent ≤ 2.83 kg/hour	45%	 35% Jan-July 2023 56% Aug-Jan 2024 	
Monthly mean hourly emissions	40% reduction	January's mean hourly emissions are 50% below baseline	
Total emissions avoided since August	n/a	>14,600kg CO ₂ eq	

Conclusions:

- Considering the greenhouse gas effect of inhaled anesthetics is a paradigm shift in this practice of medicine.
- A focus on fresh gas flows can have a profound impact on hourly and total emissions.
- There are differential global warming effects of various agents. Specifically, avoiding routine use of nitrous oxide can further reduce emissions.
- Participation in the Anesthesia CQI-sharing metrics and targets can elevate issues of environmental sustainability in the administration of anesthetics.
- Results for other Henry Ford Health System hospitals will be available after implementing similar interventions starting in December 2023.

Bibliography

- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022 Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2023. doi:10.1017/9781009425844
- Devlin-Hegedus JA, McGain F, Harris RD, Sherman JD. Action guidance for addressing pollution from inhalational anaesthetics. *Anaesthesia*, 2022;77(9):1023-1029. doi:10.1111/anae.15785
- Guetter CR, Williams BJ, Slama E, et al. Greening the operating room. Am J Surg. 2018;216(4):683-688. doi:10.1016/j.amjsurg.2018.07.021